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Abstract
We present a model which contains a new complex scalar field �, interacting
with a new real scalar field, χ , and an effective potential whose symmetry is
almost exact, being explicitly broken by Planck-scale effects. We study the
possibility of relating inflation with the dark matter of the universe. We find
that for exponentially small explicit breaking, the model accounts for a period
of inflation in the early universe and gives a dark matter candidate particle.

PACS numbers: 98.80.−k, 98.80.Cq, 95.35.+d

1. Introduction

Cosmology has made enormous progress in the last few years, especially in the accuracy of
observational data, which is taken using technologies which are more and more precise. While
in the not-too-distant past it seemed almost inconceivable, nowadays we may even talk about
‘precise cosmology’. This is why, in analogy with the standard model (SM) of particle physics,
many physicists are already talking about a ‘standard model’ of cosmology. As suggested by
recent observations of type Ia supernovas (SNIa) [1], the matter power spectrum of large-scale
structure (LSS) [2] and anisotropy of the cosmic microwave background radiation (CMB)
[3], the universe is presently dominated by two types of mysterious fluids: dark energy (DE),
which has negative pressure whose consequence is to accelerate the expansion of the universe,
and dark matter (DM), which is non-relativistic non-baryonic matter, very weakly coupled to
normal matter and that only has gravitational effects on it.

The most simple explanation for DE is a cosmological constant �, but it raises another
problem because its expected value is many orders of magnitude larger than the value suggested
by observations. Another possible explanation is the existence of a slowly rolling scalar field,
called quintessence, which is displaced from the minimum of its potential and started to
dominate the energy density of the universe recently.

The same observations indicate that the universe is isotropic and homogeneous at large
scales and spatially flat, for which in the old cosmological picture there is no reasonable
explanation. The most successful and simple solution to the flatness and homogeneity
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problems is given by inflation [4], which in its simplest version is defined as a short period
of accelerated expansion of the early universe caused by a single dominating scalar field, the
inflaton. In addition, inflation gives the most popular mechanism of generation of cosmological
fluctuations, which were the seed for the structure formation in our universe.

Although the SM based on the gauge group SU(3) × SU(2) × U(1) is a solid theoretical
construction able to accommodate all existing empirical data, it leaves many deep questions
unanswered when trying to explain the origin and nature of the new ingredients introduced by
modern cosmology, such as, for example, the inflaton, the DE and the DM. Thus, there are
reasons to believe that the SM is not the ultimate theory and one has to look for extensions of
it. If we are able to discover a theory that indeed goes beyond the SM, it will probably contain
new symmetries, either local or global.

A lot of effort has been done in studying global symmetries at high energies [5],
especially in trying to clarify the issue of quantum coherence loss in the presence of wormholes.
It was argued that the loss of coherence opens the possibility that currents associated with
global symmetries are not exactly conserved. Even if incoherence is not observed in the
presence of wormholes, it was argued that other interesting consequences may emerge,
such as the appearance of operators that violate global symmetries, of arbitrary dimensions,
induced by baby universe interactions. There are other reasons to expect that quantum
gravity effects break global symmetries: global charges can be absorbed by black holes which
may evaporate, ‘virtual black holes’ may form and evaporate in the presence of a global
charge, etc.

In this context, the authors of [6] argue that if global symmetries are broken by virtual black
holes or topology changing effects, they have to be exponentially suppressed. In particular,
in order to save the axion theory, the suppression factor should have an extremely small value
g < 10−82. This suppression can be obtained in string theory, if the stringy mass scale is
somewhat lower than the Planck scale, Mstr ∼ 2 × 1018 GeV. Thus we expect to have an
exponential suppression of the explicit breaking of global symmetries.

Even with such an extremely small explicit breaking, one can see that very interesting
consequences may appear. In [7] (from now on Paper 1), it was shown that, when a global
symmetry is spontaneously broken in the presence of a small explicit breaking, the resulting
pseudo-Golstone boson (PGB) can be a DM particle. In [8] (from now on Paper 2), a similar
study was made, but the purpose was to show that the resulting PGB could be a quintessence
field explaining the present acceleration of the universe. In addition, based on the idea
forwarded by Frieman and Rosenfeld [9], the model of Paper 2 also incorporated inflation. In
this way, the two periods of accelerated expansion may have a common origin.

There is a previous work related to explicit breaking of global symmetries [10] and
to Planck-scale breaking [11]. Cosmological consequences of some classes of PGBs are
discussed in [12].

Here, we extend the model in Paper 1 to also include inflation. The way we do it is
similar to the work in Paper 2, the difference being that here we want the resulting PGB to be
a DM particle, in contrast with Paper 2 where it was a quintessence field. Our result is that
the parameter of the explicit breaking should be exponentially suppressed, g < 10−30, as in
Paper 1, but the level of suppressions is not that high as in the case of Paper 2, where a much
smaller g ∼ 10−119 was needed in order for the PGB to explain DE. Inflation may occur here
at scales as low as V 1/4 ∼ 1010 GeV.

The paper is structured as follows: in section 2 we make a short presentation of the model
and then focus on the main features of it: inflation and dark matter. In section 3, we present
our numerical results and, finally, in section 4 we make a discussion and give the conclusions.
Technical details are given in the appendix.
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2. The model

The model is, basically, the same as in Paper 2, so we just recall it here shortly. It contains
a new complex scalar field, �, charged under a certain global U(1) symmetry, interacting
with a massive real scalar field, χ , neutral under U(1). It also contains a U(1)-symmetric
potential

Vsym(�, χ) = 1

4
λ(|�|2 − v2)2 +

1

2
m2

χχ2 +

(
�2 − κ2|�|2χ2

4�2

)2

(1)

where λ and κ are coupling constants, mχ and � are some energy scales and v is the U(1)

spontaneous symmetry breaking (SSB) scale.
The interaction term in (1) is of inverted hybrid type [13, 14] and can be realized in

supersymmetry using a globally supersymmetric scalar potential [14]. However, in the present
paper we are not preoccupied about the underlying theory in which this model can be realized,
instead we only study the phenomenology of the potential (1).

Next, we allow terms in the potential that explicitly break U(1). These terms are supposed
to come from physics at the Planck scale, and without knowledge of the exact theory at that
scale we introduce the most simple effective U(1)-breaking term [15]

Vnon-sym(�) = −g
1

Mn−3
P

|�|n(� e−iδ + �� eiδ) (2)

where g is an effective coupling, MP ≡ G
−1/2
N is the Planck mass and n is an integer (n > 3).

Summarizing, our effective potential is

V (�, χ) = Vsym(�, χ) + Vnon-sym(�) − C (3)

where C is a constant that sets the minimum of the effective potential to zero.
By writing the field � as

� = φ eiθ̃ (4)

we envisage a model in which the radial field φ is the inflaton, while the angular field θ̃ is
associated with a DM particle.

Thus, in this paper we consider the possibility of having a unified model of inflation
and DM, improving in this way the model presented in Paper 1. We also want to present a
more detailed numerical analysis of the part regarding inflation, which could also apply to the
inflationary model of Paper 2.

2.1. Inflation

We first revisit the conditions that should be accomplished by our model in order to correctly
describe the inflationary period of expansion of the universe. Inflation is supposed to have
occurred in the early universe, when the energies it contained were huge. Thus, the appropriate
term to deal with when describing inflation is the symmetric term Vsym, while the non-
symmetric one can be safely neglected, being many orders of magnitude smaller than Vsym.
Taking into account (4), we may write

Vsym(φ, χ) = �4 +
1

2
M2

χ (φ)χ2 +
κ4φ4χ4

16�4
+

1

4
λ(φ2 − v2)2 − C (5)

where M2
χ (φ) ≡ m2

χ −κ2φ2, and we have also included the constant C. As commented above,
φ is the inflaton field and χ is an auxiliary field that assists φ to inflate.
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We assume that initially the fields φ and χ are in the vicinity of the origin of the potential,
φ = χ = 0. At that point, the first derivatives of the potential are zero in both φ- and
χ -directions, but the second derivatives have opposite signs:

∂2Vsym(φ, χ)

∂φ2

∣∣∣∣
φ,χ=0

= −λv2 < 0 (6)

∂2Vsym(φ, χ)

∂χ2

∣∣∣∣
φ,χ=0

= m2
χ > 0. (7)

This means that χ remains trapped at the false minimum in the χ -direction of the potential,
χ = 0, while φ becomes unstable and can roll down in the direction given by χ = 0. If the
potential in the φ-direction is sufficiently flat, φ can have a slow roll and produce inflation.
This regime lasts until the curvature in the χ -direction changes sign and inflation has a sudden
end through the instability of χ , which triggers a waterfall regime and both fields rapidly
evolve towards the absolute minimum of the potential. The critical point where inflation ends
is given by the condition

M2
χ (φ) = m2

χ − κ2φ2 = 0 (8)

so that during inflation φ < φc = mχ

κ
� v.

The constraints related to the inflationary aspects of the model are the same of Paper 2.
Let us just summarize them here:

• vacuum energy of field χ should dominate: 1
4λv4 � �4,

• small φ-mass as compared to χ -mass:
∣∣m2

φ

∣∣ = λv2 � m2
χ � κ2v2

• slow-roll conditions: ε ≡ 1
16π

(
V ′
V

)2 � 1, |η| ≡ ∣∣ 1
8π

V ′′
V

∣∣ � 1,
• rapid variation of M2

χ (φ) at the critical point:
∣∣�M2

χ (φc)
∣∣ > H 2,

• fast roll of φ after χ gets to its minimum: large (∂Vsym/∂φ)|χmin .

These conditions have to be satisfied in order for the hybrid inflationary mechanism to
work. There are other constraints related to fairly precise observational data:

• Sufficient number of e-folds of inflation N(φ) = (8π)
/
M2

P

∫ φ

φend
(Vsym/V ′

sym) dφ in order
to solve the flatness and the horizon problems. The required number depends on the
inflationary scale and on the reheating temperature and is usually comprised between 35
for low-scale inflation and 60 for GUT-scale inflation.

• The amplitude of the primordial curvature power spectrum produced by quantum
fluctuations of the inflaton field should fit the observational data [3], PR

1/2 � 4.86×10−5.
• the spectral index ns should have the right value suggested by observations of the CMB

[3], ns = 0.951+0.015
−0.019 (provided tensor-to-scalar ratio r � 1).

Combining all the above constraints we obtain the following final relations that should be
satisfied by the parameters of our model: λ � κ2 and v < MP. We also obtain the dependence
of some of the model parameters on the SSB scale v (for more details, see Paper 2 and the
appendix). These will be used in section 3 for a numerical study. The range of values of
the scale v will be fixed by the requirement that θ is a DM candidate.

2.2. Dark matter

As stated above, our idea is that θ , the PGB that appears after the SSB of U(1) in the presence
of a small explicit breaking, can play the role of a DM particle. Thus, after the end of inflation,
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θ finds itself in a potential given by the term Vnon-sym

Vnon-sym(φ, θ) = −2g
φn+1

Mn−3
P

cos θ̃ (9)

where (4) has been used in (2) and the change of variables θ̃ −→ θ̃ + δ has been made. In
Paper 1, it was shown that for exponentially small g the evolutions of the two components of
� are completely separated, so that we expect θ -oscillations to start long after φ has settled
down at its vacuum expectation value (vev),

〈φ〉 � M
1/3
P v2/3. (10)

A detailed study of the cosmology of the θ -particle was made in Paper 1, for the lowest
possible value n = 4. We do not want to enter into details here, but just to make use of the
results of that work to obtain the values of the parameters of our model. The only difference
here is the fact that the vev of the radial field φ is different from v, so that the constraints
obtained in Paper 1 on v will apply here on 〈φ〉. This will also affect the angular field θ̃ , which
is here normalized as θ̃ ≡ θ/〈φ〉.

Due to the small explicit breaking of the U(1) symmetry, θ acquires a mass which depends
on both g and 〈φ〉

m2
θ = 2g

( 〈φ〉
MP

)3

M2
P (11)

and this is why we should find constraints on both 〈φ〉 and g in order for θ to be a suitable
DM candidate. The constraints that should be imposed come from various astrophysical and
cosmological considerations:

• θ should be a stable particle, with lifetime τθ > t0, where t0 is the universe’s lifetime.
• its present density should be comparable to the present DM density �θ ∼ �DM ∼ 0.25.
• it should not allow for too much energy loss and rapid cooling of stars [16].
• although stable, θ may be decaying at present, and its decay products should not distort

the diffuse photon background.

In Paper 1, all these constraints have been studied in detail. Because θ is massive, it can
decay into two photons or two fermions, depending on its mass. The lifetime of θ depends
on the effective coupling to the two photons/fermions and on its mass, which in turn depends
on the two parameters 〈φ〉 and g. It was shown that for the interesting value of 〈φ〉 and g for
which θ can be DM, the resulting θ -mass has to be mθ < 20 eV, so the only decaying channel
is into two photons.

There are different mechanism by which θ particles can be produced, as explained in
Paper 1: (a) thermal production in the hot plasma and (b) non-thermal production by θ -field
oscillations and by the decay of cosmic strings produced in the SSB. All these may contribute
to the present energy density of θ particles, which was computed in Paper 1. By requiring it
to be comparable to the present DM energy density of the universe, we obtain a curve in the
space of parameters 〈φ〉 and g, illustrated in figure 1 as the line labelled ‘DM’.

In Paper 1, it was argued that there are some similarities between our θ particle and
the QCD axion [17]. This is why when investigating its production in stars, we can apply
similar constraints. The strongest one comes from the fact that θ may be produced in stars
and constitute a novel energy loss channel, and these considerations put a limit on 〈φ〉, but not
on g,

〈φ〉 > 3.3 × 109 GeV. (12)
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<φ>

Figure 1. Permitted and prohibited regions in the (〈φ〉, g)-plane, taken from Paper 1. The
interesting points are those which are near the line labelled ‘DM’.

Another aspect about θ is that, although stable, a small fraction of its population may
be decaying today and the resulting photons may produce distortions of the diffuse photon
background. Thus, the calculated photon flux coming from θ -decay is constraint to be less
than the observed flux (see Paper 1 for details).

By combining astrophysical and cosmological constraints, we can obtain the interesting
values for 〈φ〉 and g for which θ is stable and its density is comparable to the DM
density. These values can be easily read from figure 1, being situated along the line
labelled ‘DM’. Note that there is an upper limit on g, which corresponds to a lower limit on
〈φ〉, i.e.,

g < 10−30, 〈φ〉 > 1011 GeV. (13)

These also put a lower limit on the value of U(1) breaking scale,

v ∼
( 〈φ〉3

MP

)1/2

> 107 GeV. (14)

Finally, according to the study made in Paper 1, for value 〈φ〉 < 7.2 × 1012 GeV, θ

particles can be produced both thermally and non-thermally, but in the region characterized
by 〈φ〉 > 1011 GeV, the dominant energy density corresponds to non-thermally produced θ

particles. Moreover, for 〈φ〉 > 7.2 × 1012 GeV, only non-thermal production is possible.

3. Numerical results

The constraints enumerated in subsection 2.1 will determine the values of some of the model
parameters. Our scope is to make a general analysis of how these parameters depend on v.
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For λ we obtain an exact formula (see the appendix)

λ = 4.4 × 10−12 φ2
0

(
v2 − φ2

0

)2(
v2 − 3φ2

0

)3 (15)

where φ0 is the value of the inflaton field when the scale k = 0.002 Mpc−1 crossed the horizon
during inflation and its v-dependence can be obtained numerically, see the appendix.

The exact formulae for the other parameters are too complicate to be shown here.
Nevertheless, things get simplified in the limit λv4 � �4 (≡ v � MP), for which we obtain

� � 1.6 × 10−3

[
φ2

0

(
v2 − φ2

0

)2(
v2 − 3φ2

0

)2

]1/4

M
1/2
P ∼ λ1/4v1/2M

1/2
P (16)

and

C � 3
4�4(λv4/�4)1/3 � �4. (17)

We note that C can be neglected, as compared to �4, in this limit.
The coupling κ is only constrained by the condition λ � κ2, so that it can have any

arbitrary value satisfying this inequality. In our numerical study we took the value κ = 10−2.
The mass of χ , namely mχ , can have any arbitrary value satisfying mχ < κv, but for the sake
of simplicity we set it to mχ = κv/2, without loss of generality.

In figure 2, we display some graphics with the v-dependence of relevant parameters of our
model. In figure 2(a), we plot the numerical results for φ0(v), which are then used to produce
the other graphics. From figure 2(b), one can see that λ does not vary too much with v and its
values are around 10−13 for a large range of v. We also note that the other parameters grow as
different powers of v. For example in figure 2(c), �, which sets the inflationary scale, varies
as v1/2 from ∼1010 GeV, for v = 107 GeV, to ∼1016 GeV, for v ∼ MP, i.e., from a relatively
low-scale to a GUT-scale inflation. In figure 2(d) are represented in the same graphic the
values of �4, C and λv4 to confirm that, in the limit v � MP, one can use the approximation
λv4 � C � �4, while for v � MP the three terms become of the same order and the above
approximation is not valid anymore. In figures 2(e) and (f ), we give additional results, such
as the number of ‘observable’ inflation N and the tensor-to-scalar ratio r ≡ 16ε.

In particular, for the lowest possible value v = 107 GeV, we get N � 47 e-folds of
inflation and a very tiny value for the tensor-to-scalar ratio, r ∼ 10−27, making the detection
of gravitational waves a practically impossible task. We specify that the spectral index
ns � 0.95 and the amplitude of curvature perturbations, PR

1/2 � 4.86 × 10−5 for all v.
We also note that for v ∼ MP, we recover the inflationary scenario proposed in Paper 2,

where θ was a quintessence field. The numerical analysis presented here can also be applied
to that model, and one obtains 〈φ〉 ∼ v,N ∼ 56 e-folds of inflation and the more interesting
result r ∼ 10−3–10−4, which makes gravitational waves detection more plausible in the future.

4. Discussions and conclusions

In this work, we have presented a model that is able to describe inflation and dark matter
in a unified scenario, by introducing a new complex scalar field � = φ exp(iθ̃ ) interacting
with a real scalar, χ , and a potential invariant under certain global U(1) symmetry. We
allowed for a small explicit breaking term in the effective potential that is due to Planck-scale
physics and investigated the possibility that φ is the inflaton and θ a dark matter particle. The
corresponding constraints have been enumerated in subsections 2.1 and 2.2.

In this way, we improve the model of Paper 1, where θ was a DM particle, but the model
did not include inflation. The results of Paper 1 are used here in subsection 2.2. For the part
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Figure 2. v-dependence of various parameters: (a) the inflaton field value corresponding to the
moment when the scale k0 = 0.002 Mpc−1 left the horizon, φ0(v); (b) the inflaton self-coupling
constant, λ(v); (c) the scale of inflation, �(v); (d) comparison between �4(v), C(v) and λv4,
which tend to be of the same order for v ∼ MP; (e) the tensor-to-scalar ratio, r(v); (f ) the number
of e-folds of inflation that occurs between the largest observable scale left the horizon and the end
of inflation, N(v).

regarding inflation in our model, in subsection 2.1 we make a similar analysis as in Paper 2,
which also improves Paper 1 by incorporating inflation, but the difference is that there θ was
a quintessence field. The numerical analysis we present in section 3 extrapolates between the
two scales considered in the models of Papers 1 and 2.

In the present numerical study, we used the value κ = 10−2 and we chose mχ = κv/2
for simplicity. We observe that a tiny value is needed for λ ∼ 10−13, in order to generate
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the correct values of the amplitude of curvature perturbations and of the spectral index. We
have no possible theoretical explanation for justifying this small λ-value, but this is a common
problem of most of the inflationary models. Although we make a general numerical analysis
to see how the parameters depend on the SSB scale v, we are finally interested in the value for
which the angular field θ is a DM candidate, v � MP.

Note that for v � MP, the vev of the inflaton field φ is different from v and is
approximately given by 〈φ〉 � v2/3M

1/3
P 	= v, while for v ∼ MP they tend to be of the

same order, 〈φ〉 ∼ O(v).
We included explicit U(1)-breaking terms in the potential and studied the possibility that

the resulting PGB, θ , could be a DM particle. We found in equation (13) that the effective
g coupling related to the explicit breaking should be exponentially suppressed, g < 10−30.
This confirms our expectations commented in the introduction that the effect of Planck-scale
physics in breaking global symmetries should be exponentially suppressed [6]. With the
extreme values g = 10−30 and v = 107 GeV, the mass of θ is fully determined, mθ ∼ 15 eV.

It would be interesting to investigate reheating in our model to determine the exact
reheating temperature Trh and also to provide a specific mechanism for producing SM particles,
but this goes beyond the scope of our paper.

As a final comment, we would like to add that such a strong suppression of g may be
avoided if, for some reason, n = 7 and all smaller values prohibited. In this case, one obtains
g of O(1), but then one should find an argument why n cannot be smaller than 7.
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Appendix

Here, we give the details of how to obtain the parameters related to inflation in our model. We
base our analysis on three constraints, which are:

(1) The number of e-folds of inflation between a given scale k crosses the horizon and the
end of inflation is given by [18]

N � 62 − ln
k

a0H0
− ln

(
1016 GeV

Vsym(φ0, 0)1/4

)
+

1

3
ln

(
Trh

Vsym(φ0, 0)1/4

)
(A.1)

where Trh is the reheating temperature and a0/k = H−1
0 � 4000 Mpc is the biggest

observable scale. A scale of interest is k0 = 0.002 Mpc−1, for which we have reliable
observational data [3]. The number of e-folds corresponding to k0 can be expressed in
terms of the inflaton field φ0

N(φ0) = 8π

M2
P

∫ φ0

φend

Vsym

V ′
sym

dφ

= π

M2
P

[
4(�4 − C)

λv2
ln

(
v2 − φ2

0

)
φ2

end(
v2 − φ2

end

)
φ2

0

+ v2 ln
φ2

end

φ2
0

− (
φ2

end − φ2
0

)]
. (A.2)
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From now on we set Trh = 109 GeV and φend = v/2 (≡ mχ = κv/2), for simplicity. By
equating the two expressions (A.1) and (A.2) for N(φ0), we finally obtain

60 − ln
1016 GeV[

�4 − C + 1
4λ

(
v2 − φ2

0

)2]1/4 +
1

3
ln

109 GeV[
�4 − C + 1

4λ
(
v2 − φ2

0

)2]1/4

= π

M2
P

[
4(�4 − C)

λv2
ln

v2 − φ2
0

3φ2
0

+ v2 ln
v2

4φ2
0

−
(

v2

4
− φ2

0

)]
. (A.3)

(2) The amplitude of the curvature perturbations P1/2
R has the observed value P1/2

R �
4.86 × 10−5 corresponding to the scale k0 [3]. This means that

P1/2
R =

√
128π

3

∣∣∣∣∣ Vsym(φ0, 0)3/2

M3
PV ′

sym(φ0, 0)

∣∣∣∣∣
=

√
128π

3

[
�4 − C + 1

4λ
(
v2 − φ2

0

)2]3/2

λM3
Pφ0

(
v2 − φ2

0

) � 4.86 × 10−5. (A.4)

(3) The value of the spectral index ns � 1 + 2η should have a value close to ns = 0.95
for the same scale k0 = 0.002 Mpc−1, where η = (

M2
P

/
8π

)
(V ′′

sym/Vsym) is a slow-roll
parameter. This becomes

2η = −λM2
P

(
v2 − 3φ2

0

)
4π

[
�4 − C + 1

4λ
(
v2 − φ2

0

)2] � −0.05. (A.5)

One can see that by combining equations (A.4) and (A.5) one obtains an expression for λ

in terms of φ0 and v:

λ = 4.4 × 10−12 φ2
0

(
v2 − φ2

0

)2(
v2 − 3φ2

0

)3 . (A.6)

Next, by replacing (A.6) with (A.5) one obtains

�4 − C = 4.4 × 10−12 φ2
0

(
v2 − φ2

0

)2(
v2 − 3φ2

0

)2

[
5

π
M2

P −
(
v2 − φ2

0

)2

4
(
v2 − 3φ2

0

)
]

. (A.7)

Finally, by introducing (A.6) and (A.7) into (A.3), one obtains an equation which relates
φ0 and v. We solved it numerically for a few v-values in the interval (107–1019) GeV and
we obtained the corresponding values for φ0, which are shown in figure 1(a). Once we
have φ0(v), we can turn back to (A.6) and (A.7) and find the values of λ and �4 − C,
respectively.

Still, we would like to find � and C separately. This can be done by requiring that the
absolute minimum of Vsym(φ, χ) is equal to zero. The position of the absolute minimum is
given by the following conditions:

∂Vsym(φ, χ)

∂φ
= −λv2φ + λφ3 − κ2φχ2 +

κ4φ3χ4

4�4
= 0,

∂2Vsym(φ, χ)

∂φ2
> 0 (A.8)

∂Vsym(φ, χ)

∂χ
= m2

χχ − κ2φ2χ +
κ4φ4χ3

4�4
= 0,

∂2Vsym(φ, χ)

∂χ2
> 0. (A.9)

Solving the above equation system, one can obtain φmin and χmin. We do not show here the
analytical solutions because they are very complicated. From the condition Vsym(φm, χm) = 0,
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one can obtain a relation between C and �. With this, going back to equation (A.7), one
obtains the dependence �(v) and subsequently C(v). The results we obtained are shown in
figures 1(c) and (d), respectively.

Things become much simpler in the limit v � MP. As shown in figure 1(d), when
v � MP, the following relations are satisfied:

λv4 � C � �4. (A.10)

In this case, from (A.5) we obtain

�4 � 5

π
λM2

P

(
v2 − 3φ2

0

) ∼ λv2M2
P (A.11)

and the solutions of (A.8) and (A.9) become very simple

φm � v1/3�2/3

λ1/6
∼ v2/3M

1/3
P , χm � 2λ1/6�4/3

κv1/3
. (A.12)

With the above expressions, the approximate solution for C is also very simple

C � 3

4
�4

(
λv4

�4

)1/3

∼ �4

(
v

MP

)2/3

∼ λv4

(
MP

v

)4/3

(A.13)

where we made use of (A.11). This also helps us understand why the following inequalities
λv4 � C � �4 are satisfied for v � MP.

In the same limit (v � MP), we get simple expressions for the v-dependence of the
number of e-folds of observable inflation, N(v) ∝ ln v, and of the tensor-to-scalar ratio,
r(v) ∝ v2

/
M2

P.
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